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ABSTRACT: - 
This study explores different types of adaptation. that applies to coupled diffusive convection in 
Oldroyd-B fluids, which are characterized by non-Newtonian behavior and the presence of elastic and 
viscous properties of the polymer process. They are prominent in many industrial applications. 
Including the production of food and biomedical equipment. By analyzing the interaction between heat 
gradients and solutions. This work explains how modulation affects flow behavior. heat transfer and 
how efficient public transportation is the results indicate that specific modulation strategies can 
significantly increase or decrease convective events. This affects operational efficiency. Moreover, 
these findings highlight the importance of nonlinear effects and interactions between rheological 
properties and external modulation. Applications in fields such as materials science, chemical 
engineering, and environmental engineering are discussed. Emphasis is placed on the practical 
implications of optimal convection behavior. This is because the field is continually evolving to 
improve our understanding of non-Newtonian fluid dynamics under various tuning situations. actually 
happened -Ongoing research needed to pave the way for innovative solutions in the world. 
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INTRODUCTION : 
Dual-diffusion convection in Oldroyd-B fluid, which exhibits complex rheological behavior due to its 
viscoelastic properties. It is an interesting area of study of fluid dynamics. Modulation techniques 
applied to these fluids can have a significant impact on their flow characteristics, stability, and transport 
phenomena. Various types of adjustment Includes thermal, solute, and magnetic fields. It can change 
the pattern of convection and diffusion processes. This leads to specific results in applications such as 
chemical engineering, biomedical devices. and materials science... in chemical engineering Processes 
such as polymer blending and food production Optimization can be achieved by understanding how 
adjustments affect mixing and reaction rates. in the biomedical field Manipulating oldroyd-B fluids can 
improve drug delivery systems and tissue engineering by controlling fluid flow in the 
microenvironment. Additionally, modulated convection in materials science can help develop 
composites that It has been optimized to ensure even distribution of components. This introduction 
explores the mechanism of coupled diffusion convection in various aspects of oldroyd-B fluids. Its 
relevance and possible applications are highlighted. By examining these interactions Researchers can 
develop new strategies.The unique properties of these complex fluids for improved technological 
results. 
 
REVIEW OF LITERATURE : 
This study focuses on investigating buoyancy convection in a viscous double Bingham fluid layer 
under gravity modulation. The search included evaluation of non-linear and slightly linear stability. 
Important Rayleigh number expressions are obtained using linear analysis. The heat and mass transfer 
parameters Nu and Sh were calculated by nonlinear analysis using Eq. Ginzburg-Landau Numerical 
values are obtained from the modulation wavenumber and amplitude variables. The effect of 
gravitational adjustment on heat and mass transfer can be quantified using the corresponding Nusselt 
number (Nu) and Sherwood number (Sh). In addition, several factors exist. It has a strong influence on 
heat and mass transfer processes. Moreover, it is analyzed and visualized using graphical tools. Weak 
nonlinear stability analysis completed... It is considered a practical method for investigating the 
stability and dynamic behavior of nonlinear systems. The existence of time-varying gravitational 
acceleration and triple diffuse convection have a dramatic effect on the generation of acceleration. This 
creates different dynamics within the field. Understanding natural Rayleigh-Bernard convection and 
related phenomena. Newton's fluid layer is heated, salty, and saturated from the area below. As a result, 
the temperature and concentration in the lower plate are higher compared to the upper plate. current 
research. 
 
MATHEMATICAL FORMULATION: 
We consider a Newtonian, incompressible binary fluid, confined between two parallel horizontal 
walls.Cartesian co-ordinates have been taken with the origin in the middle of the fluid layer and the z-
axis vertically upwards, so that the fluid lies between the planes = −d/2 and z = d/2. The walls are 
infinitely extended in x and y directions, and are rigid. A temperature gradient 
∆T is maintained across the fluid layer by heating from below. Also we maintain a stabilizing uniform 
concentration gradient ∆S between the walls of the layer. The Soret and Dufour effects on heat and 
mass diffusion are assumed to be negligible. Then under the Boussinesq approximation the basic 
governing equations are 
 
 

                                                  (1.1) 

 (1.2) 



95                                                        JNAO Vol. 16, Issue. 1, No.1 :  2025  

 

  (1.3) 
  (1.4) 

                                                                                                         (1.5) 

where         ,    and    are the constant reference density, temperature and concentration, 
respectively. V =Temperature Modulation of Double Diffusive Convection (u,v,w) is the velocity, p 
the pressure, S the solute concentration, T the temperature, g= (0,0,−g) the acceleration due to gravity 

and t the time; ν is the kine-matic viscosity,    the thermal diffusivity,     solute diffusivity, and 
α and β are the coefficients of thermal and solute expansion, respectively. For the temperature 
modulation of the boundaries we consider the following cases: 
 
(i) When the temperature of the lower and upper boundary is modulated, we have 
 

(1.6a) 
(1.6b) 
(ii) When the upper boundary is held at a fixed con- stant temperature, then 
 

 
(1.7b) 

Here ∆T represents the temperature difference, ε is the amplitude of the modulation, φ the phase angle 
and ω the frequency of the modulation. Since we maintain as tabilizing uniform concentration gradient 
∆S between the walls of the porous layer, the imposed boundary conditions on S are 
 

And 
  (1.8) 

Basic State 
The basic state of the fluid is quiescent and can be given 
 
by                                            (1.9) 

 

The temperature  concentration pressure , and density satisfy the 
equations 
 

  (1.10) 

  (1.11) 

  (1.12) 
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                                         (1.13) 
 
Equation (1.10) can be solved for the above cases (i) and (ii). We write 

                         (1.14) 
where 

  (1.15 

 
 

(1.1 
and 
 
 

(1.17 
Solving (1.11) for concentrations with the boundary conditions (1.8), we get 
 
 

(1.18 
LINEAR STABILITY ANALYSIS: 
Let the system (1.9) be slightly perturbed. Then, in order to examine the behaviour of infinitesimal 
thermal disturbances to the basic state, we write 
 
 

        
(1.19) 
 
Where V , θ’, S’, p’ and ρ’ represent the perturbed quantities which are assumed
 to be small. We 
substitute (1.19) into (1.1) – (1.4) and linearize with respect to the 
perturbation 
quantities V’ , θ’, S’ and p’. In order to non-dimensionalize the variables, we scale 
the length,time, temperature, velocity, pressure and modulation 
frequency according to 

 
(1.20 

 
Then the non-dimensionalized governing equations for the perturbed variables, namely the vertical 
compo-  
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(2.1) 
 
 

(2.2) 
where 

 

if m is odd  if m is even (2.4 
 
 
 

(2.5) 
 

 
 
(m = 1,2,3,...,N). (2.6) 
The above functions ψm(z), ϕm(z) and φm(z) are defined such that each forms an orthonormal set in 
the interval (−1/2 , 1/2)and vanishes at z = ±1/2 . For the derivatives of ψm(z) to vanish at z = ±1/2 , 
µm must be the 
 
 
roots of the characteristic equation [28] 
 
 

(2.7) 
Substituting the expressions (2.1) – (2.3) for w,θ and S in (1.29) – (1.31) and then multiplying by ψ 
n(z),ϕn(z) and φn(z) (n = 1,2,3,...,N), respectively, the resulting equations are then integrated with 
respect to 
z in the interval (−1/2 , 1/2). The outcome is a system of 3N ordinary differential equations for the 
unknown coefficients An(t), Bn(t) and Cn(t) as given by 
 
nents of the velocity w, temperature θ and solute con- centration S, in linear form, are 
 

  
(1.21) 

  
(1.22) 

  
(1.23) 
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where  and    The non  
 dimensionalized  numbers which appear in the above equations are: the thermal
  Rayleigh number 

   
 

the solute Rayleigh number    ,the Prandtl number , and the diffusivity ratio 

. The non- dimensional temperature and  
 
concentration gradients    and     which appearin (1.22) and (1.23), respectively, can be obtained 
from the dimensionless forms of (1.14) and (1.18) as 
 

  
(1.24) 

  
(1.25) 
where 

             (1.26) 
and 

  
(1.27) 
 
Now we seek the solution for the three unknown fields, 
namely velocity, temperature and concentration, using the normal mode technique as 
 

 

 
 

(1.28a, b, c) 
Substituting the expressions (1.28) in (1.21) – (1.23), we get 

(1.29) 
 

(1.30) 
 

  (1.31) 
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where is the horizontal wave number and 
D ≡ ∂/∂z. The boundary conditions for the rigid and conducting walls are given 
by w = Dw = θ = S = 0 at z = ±1/2. (1.32) 
METHOD 
Using the Galerkin method, we transform the partial differential   equations   (1.29)   – (1.31) into a 
system of ordinary differential     equations. The ordinary differential equations are then solved  
numerically. We have 
 

 
 
 

(2.8) 

(2.10) 
where δnm is the Kronecker delta. The other coefficients, which appear in (2.8) – (2.10), are given by 

  
(2.11) 

  
(2.12) 

  
(2.13) 
and 
 
 

he above coefficients have been evaluated numeri- cally ([29], p. 125). Now, for the computational 
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pur- pose we introduce the notations 
 
X1 = A1, x2 = B1,   x3 = C1, 
X4 =A2 X5=B2, X6=C2 (2.15) 
 
and rearrange (2.8) – (2.10) in the form 
 
 
(i, j = 1,2,...,3N), (2.16) 
where the coefficients Gi j(t) are periodic in t with the period 2π/ω. The fundamental matrix C =[xi 
j(2π/ω)] of the solutions has been obtained by integrating the system (2.16), using the Runge- Kutta- 
Gill procedure ([29], p. 217, 227). Eigenvalues ofthe matrix C are obtained using Rutishauser’s method 
([30], p. 116), and the stability of the solution of (2.16) is discussed with the 
 
help of the classical Floquet theory ([31], p. 55).4.x 
 
RESULTS AND DISCUSSION: 
We did find during the process of numerical solution that it is sufficient to take N = 4 (four Galerkin 
terms –two even and two odd), therefore all the following results have been obtained for N = 4. The 

values of the critical Rayleigh number    and corresponding wave 
number  in the absence of modulation (ε = 0) are found as given in Tables 1 and 2. 
Now we consider ε      0 and find the effect of the temperature modulation on double diffusive 
convection in a binary fluid layer. The results have been obtained by solving (3.16) for x1, x2, x3, x4, 
x5, x6, x7,x8, x9, x10, x11 and x12, i. e., a system of 12 simultaneous ordinary differential equations 

has been considered. The values of      have been calculated for the following three cases: 
(a) when the plate temperatures are modulated in phase, i. e., φ = 0; (b) when the plate 
temperatures are modulated out of phase, i. e. 

 
 
φ = π; and (c) when only the bottom plate temperature is modulated, the upper plate being held at a 

fixed constant temperature, i. e., φ = . The variation of the critical Rayleigh number  with 
respectto the modulation frequency ω and the amplitude of modulation ε, for different variables, are 
shown in 
Figures 1 – 8. 
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Figures 1 – 3 show the variation of  with ω for different values of the solute Rayleigh number 

 the values of the other parameters are ε = 0.4, Pr = 1.0,τ = 0.05. We observe from the figures that 

the value of the critical Rayleigh number  increases with increase of the value of  , thus 

showing that the effect of increasing the solute Rayleigh number     is to delay the onset of double 
diffusive convection, as convection occurs at higher Rayleigh number. 
In Figs. 4 – 6 we depict the variation of with ω for different values of the 

diffusivity ratio τ, at ε = 0.4, Pr = 1.0,  = 500.0. From the figures we notice that on increasing the 

value of τ, the value of the critical Rayleigh number decreases. Thus, the effect of increasing the 
value of τ is to advance the onset of convection, as the onset of double diffusive convection 
takes place at a lower Rayleigh number. Now, to find the effect of temperature modulation on the onset 
of double diffusive convection, first we con-sider case (a), i. e., in phase modulation. From Figs. 1and 
4 we observe that for small values of ω the effect of modulation is small, but destabilizing as convection 
occurs at a lower Rayleigh number than in the steady temperature gradient case (Tables 1 and 2). For 
intermediate values of ω the effect of modulation be 
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comes maximal (destabilizing) near ω = 17, and then decreases with increasing value of ω. It stabilizes 
the system at around ω = 60, and finally falls off to zero as ω → ∞ (see the Tables 1 and 2). But when 
the temperature modulation is out of phase (Figs. 2 and 5), or when the upper plate is at constant 
temperature (Figs. 3 and 6), the effect of modulation is found to be stabilizing. The stabilizing effect is 
greatest near ω = 0 and disappears altogether when the frequency ω becomes sufficiently large. We 
know that at high frequency, modulation becomes very fast, therefore the temperature in the fluid layer 
is unaffected by the modulation except for a thin layer, so that we find almost the same value of 

    as for zero modulation (Tables 1and 2).However, when the 
frequency of modulation is small, the effect of modulation is felt throughout the fluid layer. Further, 
the temperature profile consists of a steady straight line section plus a time-dependent parabolic 
part that oscillates with time. Now when the temperature modulation is in phase, this time 
dependent parabolic profile becomes more and more significant as the amplitude of modulation 
increases.Since the parabolic profile is subject to finite amplitude instabilities the convection takes 
place at an early point thus destabilizing the system at low frequency. Further,when the modulation 
frequency increases, the effect of parabolic profile decreases, so the system becomes less destabilized 
and then at some frequency it becomes stabilized on further increasing the value of ω. 
But 
 

when the temperature modulation is out of phase or the upper wall is at constant temperature, the 
convective wave propagates across the fluid layer, thereby inhibiting the instability, and so the 
convection occurs at higher Rayleigh number than that predicted by the linear theory with a steady 
temperature gradient. This propagation is greatest at low frequency, but decreases 
with increasing frequency; therefore the stabilizing effect is highest for small frequencies and decreases 
as 

the frequency increases. Figure 7 depicts the variation of  with the amplitude of modulation ε, 
for all the three cases, at ω = 17.0, τ = 0.05, RS = 500.0, Pr = 1.0. From the figure we find that for in 

phase modulation,   decreases when the amplitude of modulation ε increases.However for out of 

phase modulation, or when only the lower wall temperature is modulated, we observe that   
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increases as ε increases, thereby showing the stabilization of the system with increasing value 
of ε. In the last Fig. 8 we have compared the results corresponding to N = 4 and N = 6. It is found that 
the error in the results for N = 4 and N = 6 is about 0.074%. This justifies our calculations which 
correspond to N = 4 in this article. 
 
CONCLUSION : 
In the present article we consider the effect of temperature modulation on double diffusive convection 
in a horizontal binary fluid layer with rigid-rigid bound aries, under the assumptions that disturbances 
are infinitesimal and the amplitude of the applied temperature field is small. The following 
conclusions are drawn: 

1. The value of the critical Rayleigh number  increases on increasing the value of 

the solute Rayleigh number  . This shows that the effect of increasing the value of the solute 
Rayleigh number is to delay the onset of double diffusive convection. 
2. The effect of increasing the value of the diffusivity ratio is to decrease the value of 
the critical Rayleigh number, thus advancing the onset of double diffusive convection. 
3. We find that for in phase modulation, the modulation effect is small (destabilizing) 
when ω is small, becomes maximal (destabilizing) at around ω = 17, decreases for intermediate values 
of ω, becomes stabilizing on further increasing the value of ω, and finally falls off to zero as ω → ∞. 
4. For the out of modulation case, or when only the lower wall temperature is 
modulated, the effect of modulation is found to be most stabilizing near ω = 0,becomes less stabilizing 
for intermediate values of ω, and finally disappears as ω becomes very large. 
5. The applicability of the present theory, however, 
6. seems to be doubtful for the limit ω → 0 [18, 20]. 
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